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Outline

• Introduction

• Notional Lunar Relay Architecture Options for RF Links

▪ Three Relay Orbiters – Two at Polar Frozen Elliptical Orbits, 

and One at Equatorial Circular Orbit

▪ One Relay Orbiter ina 74-Day Lissajous Orbit at the Earth-

Moon Lagrange Point L2

▪ One Relay Orbiter in a 14-Day Lunar Distance Retrograde 

Orbit (Not shown)

• Notional Lunar Relay Architecture for Optical Links

• Concluding Remarks
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Introduction (1)

• Planned Lunar missions in the next ten years
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Mission Launch Yr Agency # of Vehicles Mission Type 
Chandrayaan-2 2018 ISRO 3 Orbiter/lander/rover 

Chang’e 4 2018 CNSA 2 Lander/rover 

Chang’e 5 2017 CNSA 2 Orbiter/rover for sample return 

Chang’e 6 2020 CNSA 2 Orbiter/rover for sample return 

KPLO 2018 KARI 1 Orbiter 

Korean Lunar Mission 2021 KARI 3 Orbiter/lander/rover 

Luna 25 2024 RFSA 1 Lander 

Luna 27 2020 RFSA 1 Rover 

Luna 26 2020 RFSA 1 Orbiter 

SLIM 2019 JAXA 1 Lander 

SELENE-2* 2022 JAXA 3 Orbiter/lander/rover 

Resource Prospector* 2020 NASA 2 Lander/rover 

EM-1** 2018 NASA 1 Orbiter 

EM-2** 2020 NASA 1 Orbiter 

Lunar Flashlight 2018 NASA 1 CubeSat Orbiter 

Lunar IceCube 2018 NASA 1 CubeSat Orbiter 

Lunar H-Mapper 2018 NASA 1 CubeSat Orbiter 

ArgoMoon 2018 ASI 1 CubeSat Orbiter 

SLSSLIM 2018 JAXA 1 CubeSat Lander 

EQULLEUS 2018 JAXA 1 CubeSat Orbiter 

 



Introduction (2)

• The moon is unique in the following way

▪ Moon is rotation at the same rate as its revolution of 27.3 days, resulting 

in permanently shielded far-side

▪ Earth’s ground stations (DSN’s 3 sites) can always cover the near-side

▪ Orbiters at Moon are affected by Moon, Earth, and Sun

• Criteria on choosing lunar relay architecture

▪ Orbit(s) should be stable to minimize ΔV

▪ Range should be small to minimize space loss

▪ High average contact duration across all latitudes

▪ High percentage of contact time across all latitudes

▪ Small maximum gap time across all latitude
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RF Option 1: 2 Polar Frozen, 1 Equatorial Circular (1)
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Lunar	Satellite	Orbits
semi-major	axis		

(km)

Eccentricity Inclination	

(deg)

Ascending	node	

(deg)

Argument	of	

Perilune	(deg)

(deg)

Mean	Anomaly	

(deg)

(deg)12-Hr	Circular	Equatorial 6142.4 0 0 0 315 0

12-Hr	Elliptical	North 6142.4 0.59999 57.7 270 270 0

12-Hr	Elliptical	South 6142.4 0.59999 57.7 0 90 0



• Pros

▪ Can be built up incrementally – S. Pole, Equator, N. Pole

▪ Offer good and relatively even coverage at different latitude

– Long contact duration (5 – 7 hours)

– Large total contact time per day (17.6 – 19.4 days)

– Short gap time (1.4 – 5.8 hours)

• Cons

▪ Requires launching three satellites into orbit
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RF Option 1: 2 Polar Frozen, 1 Equatorial Circular (2)
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RF Option 2: 1 Relay Orbiter in a 74-Day Lissajhous Orbit (1)



• Highlights of coverage performance

▪ Covers most of lunar far-side, except the far-side equator

▪ Favors the far side S. Pole

▪ 0.8 – 1.2 contacts per 10 days

▪ Average contact 20 to 170 hours

▪ Range can be as long as 90000 km

▪ Communication gaps can be 90 hours or more

▪ S. Pole has no or low visibility with Earth, and has to rely on relay orbiter 

▪ An additional ground station in S. Hemisphere (e.g. Heetebeesthoek, S. 

Africa) helps to eliminate the daily short gaps 8

RF Option 2: 1 Relay Orbiter in a 74-Day Lissajhous Orbit (2)



Notional Lunar Relay Architecture for Optical Links (1)

• We consider a lunar relay architecture that consists of

▪ A lunar relay orbiter in a 74-day Lissajous orbit at Earth-Moon L2

▪ 3 Earth-orbiting relay orbiters at 3 TDRSS GEO locations G, K, and H

▪ 3 optical ground telescopes at White Sands, Guam, and Tenerife 

• For optical links, we consider the additional coverage constraints

▪ Sun-”Earth”-Probe (SEP) < 10o, Sun-Probe-”Earth” (SPE) < 3o

• Consider coverage of 4 optical links

▪ A. Lunar S. Pole to L2-Relay

▪ B. L2-Relay to TDRSS

▪ C. Lunar near-side (longitude/latitude = 0o/0o) to TDRSS

▪ D. TDRSS to optical ground telescopes
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Notional Lunar Relay Architecture for Optical Links (2)

• Lunar relay architecture and data flow for optical links
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Lunar Relay Architecture & Data Flow for Optical Links 
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Lunar	Surface	Asset Lunar	Optical	Relay Optical	TDRS Optical	Ground	Station



Notional Lunar Relay Architecture for Optical Links (3)

• A. Lunar S. Pole to L2-Relay Link (74-day period)

▪ 9 gaps ranging from 3.8 to 89.3 hours
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7

Lunar South Pole to L2-Relay (Elevation Angle)

Gaps



Notional Lunar Relay Architecture for Optical Links (4)

• B. L2-Relay to TDRSS Link (Space-to-Space Link)

▪ 1.5-day gap every 27.3 days
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8

L2-Relay to TDRS (Sun-Earth-Probe Angle)



Notional Lunar Relay Architecture for Optical Links (5)

• C. Lunar near-side (0o/0o) to TDRSS Link (Space-to-Space Link)

▪ 1.5-day gap every 27.3 days
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9

Lunar Nearside (0-latitude, 0-longitude) to TDRS (SEP Angle)



Notional Lunar Relay Architecture for Optical Links (6)

• D. TDRSS to Ground Telescope Link (Space-to-Ground Link)

▪ “Fast-varying” daily SEP dip, “slow-varying” yearly SEP profile
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10

TDRS to Optical Ground Telescope Links (SEP Angle)



Concluding Remarks

• This paper describes our effort of searching different lunar relay 

architectures and assessing their coverage performance and other 

pros and cons for RF and optical links 

• RF link coverage is affected by elevation angle, and to a small 

extend by SEP and SPE angles

• Operational challenge: long optical link outage due to SEP/SPE 

angles

▪ Earth-Mars system – 1.9 years, SEP outage (long synodic period) for 2.5 

months every 2 years

▪ Earth-Jupiter system – 11.9 years, SPE outage (Earth’s rotation) of 33 

days every 6 months
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